
	

https://figuzup.tugoduzak.com/886712102095012685239565037805104729378388?dutoxewanusebovobiziwukugilimanajurezuniguzumofowotobemomegurufibexulofozebojomij=rixofufofesokixejikuzupuxejelizixajegixoxirikavorusezixogezuzefuwokunokakavaworivaxiduxajuxoxabutimebugefixeromogojegijuzalowadidenugozokibegiladagavusimadokawixeleruzonuniporoniwunusijerivumufavulavexesoga&utm_term=how+to+use+gitlab+for+beginners&zonerepeguvonukilubowupatanusoteninabifedexizajufofiveluzazo=mudipalijutosuxoxaxanusokumupepunegelotagoloxufikamezozatobopalikurogunakufuzamuzilobudimujemavolosegavikugigabopivoxekomibo

FacebookLinkedInTwitterYouTubeFacebookLinkedInTwitterYouTube	Git	isn't	hard	to	learn,	and	when	you	combine	Git	with	GitLab,	you've	made	it	a	whole	lot	easier	to	share	code	and	manage	a	common	Git	commit	history	with	the	rest	of	your	team.	This	tutorial	shows	you	how	it's	done.	How	to	learn	Git	and	GitLab	While	it	takes	time	to	fully	master	a	DevOps	tool	such	as	Git,	any	developer	who	follows	this	10-step	Git	and	GitLab	tutorial	will	become	competent	with	these	popular	DevOps	and	CI/CD	tools	very
quickly.	The	10	steps	to	follow	to	learn	Git	and	GitLab	fast	are	as	follows:	Install	Git	and	create	a	GitLab	account.	Create	a	Git	repository	in	GitLab.	Add	files	and	commits	to	your	GitLab	repo.	Create	new	Git	branches.	Toggle	between	branches	in	GitLab.	Create	a	GitLab	merge	request.	Approve	a	GitLab	merge	request.	Clone	the	remote	GitLab	repo	locally.	Use	the	most	important	Git	commands	locally.	Push	your	local	changes	back	to	GitLab.	Step	1:	Install	Git	and	create	a	GitLab	account	To	get	started	with
Git	and	GitLab,	you	must	first	install	Git	locally	and	register	for	a	GitLab	account.	The	Git	installation	on	Windows	is	straightforward.	Simply	download	and	run	the	installer,	accept	all	the	defaults	and	Git	will	be	installed,	along	with	the	Git	Bash	and	Git	GUI	tools.	To	register	for	a	GitLab	account,	all	you	need	to	do	is	create	a	unique	username,	set	your	credentials	and	validate	your	email	address.	Once	that's	complete,	you	can	move	onto	Step	2	of	this	Git	and	GitLab	tutorial.	Step	2:	Create	a	repository	in	GitLab
When	you	log	in	to	GitLab	for	the	first	time,	you	are	asked	to	create	a	project.	Choose	this	option	to	create	a	new,	blank	Git	repository	on	the	GitLab	server.	Teams	of	developers	use	a	Git	repository	to	perform	the	following	tasks:	Track	their	files	and	their	commit	histories.	Create	branches	and	issue	merge	requests.	Share	code	and	collaborate	with	others.	When	the	form	to	create	a	project	appears,	simply	provide	a	name	for	the	project	and	set	the	GitLab	repo's	visibility	to	public.	Accept	all	the	other	defaults
and	submit	the	form	to	create	your	first	GitLab	repository.	One	of	the	first	steps	in	any	Git	and	GitLab	tutorial	has	to	be	the	creation	of	a	GitLab	repository.	Step	3:	Add	files	and	create	commits	online	The	landing	page	for	your	new	repository	has	a	button	with	a	plus	sign	on	it.	Click	this	button	to	create	a	new	file.	When	you	save	the	file,	you	will	be	forced	to	provide	a	commit	message.	With	each	save,	you	add	to	your	Git	commit	history.	Add	three	new	files	with	the	following	names	and	Git	commit	messages:
alpha.txt	First	Git	commit	bravo.txt	Second	Git	commit	charlie.txt	Third	Git	commit	Once	added,	the	three	files	and	their	commit	messages	display	on	your	GitLab	repository's	homepage.	You	can	click	on	them	to	view	their	content	or	perform	further	edits.	GitLab	allows	you	to	add	files	and	create	Git	commits	online.	Step	4:	Create	Git	branches	and	add	files	Note	that	you	are	currently	on	a	branch	called	main.	Using	the	same	plus	button	as	you	did	in	Step	3,	create	a	new	branch	named	dev.	Add	another	file
named	devo.txt	and	use	'Fourth	Git	commit'	for	the	message.	This	new	file	will	be	added	to	the	dev	branch.	It	will	not	be	visible	on	the	main	branch.	Step	5:	Navigate	between	Git	branches	Use	the	drop-down	box	to	toggle	between	the	dev	and	the	main	branch.	Notice	how	the	devo.txt	file	is	on	the	dev	branch,	but	it	is	not	on	the	main	branch.	Git	branches	allow	developers	to	do	isolated	development	separately	and	independently	of	the	work	of	other	developers.	This	encourages	creativity,	experimentation	and
chance-taking.	If	an	experiment	doesn't	work,	the	branch	can	be	deleted.	If	the	creative	endeavor	is	a	success,	the	new	branch	can	be	merged	into	the	main	branch	for	others	to	see.	The	devo.txt	file	is	only	in	the	dev	branch.	A	git	merge	must	be	performed	for	it	to	be	visible	on	the	main	branch	on	GitLab.	Step	6:	Create	a	GitLab	merge	request	To	bring	the	dev	and	main	branches	in	sync,	click	the	blue	Create	merge	request	button	at	the	top	of	the	screen.	Fill	out	the	title	and	the	description	and	submit	the
merge	request	form.	Merges	can	be	performed	locally	or	through	GitLab	merge	requests	online.	Step	7:	Accept	a	merge	request	in	GitLab	When	you	open	the	GitLab	navigation	bar	on	the	left,	you	will	see	a	new	Merge	request	listed.	Click	the	Merge	requests	link	and	then	Approve	to	approve	it.	If	you	like	Devo,	give	it	a	thumbs-up	as	well.	Leave	the	"'Delete	source	branch"	option	selected	and	click	Merge.	When	you	return	to	the	homepage	of	your	repository,	notice	that	the	devo.txt	file	is	in	the	main	branch,
and	the	dev	branch	is	deleted.	Learning	how	to	approve	a	merge	request	is	an	important	step	in	any	Git	an	GitLab	tutorial.	Step	8:	Clone	the	GitLab	repository	A	clone	of	a	GitLab	repository	brings	all	the	files	and	branches	on	the	server	down	to	the	developer's	local	machine.	Most	Git	operations	happen	locally,	in	tandem	with	local	software	development.	Find	the	GitLab	URL	Click	the	blue	Code	button	on	the	repository's	GitLab	page	and	copy	the	HTTPS	GitLab	URL.	Then	open	Git	Bash	in	the	folder	where	you
want	to	store	the	folders	and	files	for	this	repository	and	issue	the	git	clone	command:	git	clone	After	the	clone	command	completes,	you	can	find	all	the	files	in	your	Git	repository	under	a	subdirectory	with	the	same	name	as	your	GitLab	project.	When	you	clone	a	GitLab	repo,	Git	makes	all	the	files	in	that	repository	available	on	your	local	machine.	Step	9:	Perform	standard	Git	operations	With	the	GitLab	repository	cloned	locally,	you	can	add	files,	edit	files,	delete	files	and	play	around	with	various	Git	porcelain
commands	including	the	following:	Fetch,	merge	and	pull	are	three	of	the	important	porcelain	Git	commands	with	which	beginners	should	become	comfortable.	Step	10:	Push	your	changes	back	to	GitLab	When	you	are	done	with	local	development,	you	can	push	your	updated	set	of	local	commits	back	to	the	server	with	a	push	command:	git	push	origin	The	first	time	you	push	using	HTTPS,	make	sure	you	are	logged	into	GitLab	on	your	default	web	browser.	You	must	be	authenticated	to	push	changes	into	a
GitLab	repository.	GitLab	authentication	troubleshooting	On	a	Windows	machine,	GitLab	will	try	to	validate	your	credentials	using	OAuth	to	log	you	in	to	the	server.	If	the	git	push	attempt	results	in	a	403	error,	you	might	need	to	obtain	a	GitLab	personal	access	token	and	authenticate	with	that.	If	authentication	continues	to	be	an	issue,	you	could	alternatively	create	SSH	keys	for	GitLab	and	authenticate	over	secure	shell.	GitLab	is	a	full-featured	and	powerful	CI/CD	platform	built	around	the	popular	Git	tool.
Learning	how	to	use	Git	with	GitLab	is	the	first	step	to	take	advantage	of	GitLab's	many	features.	Cameron	McKenzie	has	been	a	Java	EE	software	engineer	for	20	years.	His	current	specialties	include	Agile	development,	DevOps	and	container-based	technologies	such	as	Docker,	Swarm	and	Kubernetes.	View	All	Videos	GitLabGitLab	is	an	open-source,	web-based	DevOps	lifecycle	tool	that	provides	a	Git	repository	management	system,	CI/CD	pipeline	features,	and	collaboration	tools,	all	in	a	single	platform.	Its
designed	to	help	developers	and	teams	manage	code,	track	issues,	automate	testing	and	deployment,	and	collaborate	on	software	projects	efficiently.CI	/	CDContinuous	Integration	(CI)	and	Continuous	Delivery/Deployment	(CD)	are	key	practices	in	modern	software	development	that	aim	to	improve	the	efficiency	and	reliability	of	the	software	delivery	process.CI	/	CD.	SourceContinuous	IntegrationCI	is	the	practice	of	frequently	integrating	code	changes	from	multiple	developers	into	a	shared	repository,
followed	by	automated	testing	to	detect	issues	early.Developers	(DEV)	write	code	and	commit	changes	frequently.The	system	automatically	triggers	an	Application	Test	to	validate	code	functionality.If	successful,	an	Integration	Test	ensures	that	changes	integrate	well	with	the	existing	system.The	goal	of	CI	is	to	detect	issues	early	and	ensure	the	software	is	always	in	a	deployable	state.Continuous	Integration.	SourceContinuous	DeliveryContinuous	Delivery	extends	CI	by	ensuring	that	the	code	is	always	in	a
deployable	state.After	passing	integration	tests,	the	software	moves	to	Acceptance	Testing	(e.g.,	user	acceptance	testing,	performance	testing).The	release	to	Production	is	manual	a	human	decides	when	to	deploy.Ensures	the	software	is	always	in	a	deployable	state	but	requires	approval	for	release.Continuous	Delivery.	SourceContinuous	DeploymentContinuous	Deployment	takes	Continuous	Delivery	further	by	automatically	deploying	every	change	that	passes	the	automated	tests	directly	to	production,
without	manual	approval.After	passing	all	tests,	the	system	automatically	deploys	the	software	to	Production.No	manual	approval	is	needed.Ensures	fast	and	frequent	releases,	but	requires	a	high	level	of	automation	and	confidence	in	testing.Continuous	Deployment.	SourceGitLab	supports	all	three	practices	through	its	built-in	CI/CD	pipelines.GitLab	CI/CD	Pipelines.	SourceHow	GitLab	Works?GitLab	is	built	using	a	distributed	architecture	that	consists	of	multiple	components	to	handle	code	management,
CI/CD	execution,	security	scanning,	and	deployment	efficiently.SourceGitLab	Instance	(or	Server)This	is	the	heart	of	GitLab,	where	your	code	repositories,	project	data,	and	user	accounts	reside.	Its	the	central	hub	for	everything.Self-hosted:	You	install	and	manage	GitLab	on	your	own	servers,	giving	you	full	control.GitLab.com:	GitLabs	cloud-based	SaaS	offering,	where	they	handle	the	infrastructure.Components:Rails	application	(frontend	and	API)Gitaly	(Git	repository	storage)PostgreSQL	database	(stores
metadata,	issues,	etc.)Redis	(caching	and	job	queues)Sidekiq	(background	job	processing)NGINX	(web	server	and	reverse	proxy)GitLab	Instance	and	Runners.	SourceGitLab	JobsJobs	are	individual	tasks	defined	in	a	.gitlab-ci.yml	file	within	a	repository.	They	represent	steps	in	the	CI/CD	pipeline,	such	as	building	code,	running	tests,	or	deploying	applications.Jobs.	SourceJobs	are	grouped	into	stages	(e.g.,	build,	test,	deploy).	Each	job	specifies	a	script	to	execute,	an	image	or	environment	(e.g.,	Docker),	and
conditions	(e.g.,	run	only	on	specific	branches).GitLab	RunnersThese	are	agents	that	execute	the	jobs	defined	in	your	CI/CD	pipelines.	They	do	the	heavy	lifting	of	building,	testing,	and	deploying	your	code.Runners	can	be	installed	on	various	machines	(physical,	virtual,	containers)	and	operating	systems,	giving	you	flexibility	in	how	you	run	your	pipelines.SourceShared	Runners:	Used	across	multiple	projects	(Cloud-based	or	Self-hosted).Specific	Runners:	Assigned	to	a	specific	project.Overall
ArchitectureSingle-Server	Setup:All	components	(web	server,	database,	Git	storage,	Sidekiq,	Redis)	run	on	one	machine	with	embedded	runners.Suitable	for	small	teams	or	testing	but	limited	in	scalability.High-Availability	Setup:Load	Balancers:	Distribute	web	traffic	across	multiple	GitLab	application	nodes.Application	Nodes:	Run	the	web	server	and	Sidekiq,	connected	to	a	shared	filesystem	(e.g.,	NFS)	for	Git	data.Database	Cluster:	Replicated	PostgreSQL	instances	for	redundancy.Redis	Cluster:	For	caching
and	job	queuing,	also	replicated.Runners:	Distributed	across	multiple	machines	or	cloud	instances,	communicating	with	the	GitLab	server	via	the	API.The	GitLab	instance	uses	REST	and	WebSocket	APIs	to	coordinate	with	runners,	while	internal	services	(e.g.,	Sidekiq,	Redis)	handle	asynchronous	tasks.Git	GitHub	GitLabGitLab	and	Git	are	related	but	serve	different	purposes	in	the	software	development	process.GitGit	is	a	distributed	version	control	system	(DVCS)	designed	to	handle	everything	from	small	to
very	large	projects	with	speed	and	efficiency.	It	was	created	by	Linus	Torvalds	in	2005	for	the	development	of	the	Linux	kernel.It	manages	the	history	of	code	changes	(commits),	supports	branching	and	merging,	and	allows	offline	work	by	storing	a	full	repository	locally.Developers	use	Git	locally	to	commit	changes,	then	sync	with	a	remote	repository	(e.g.,	on	GitLab	or	GitHub)	using	git	push	and	git	pull.How	Git	Actually	Works.	SourceExample:	A	developer	runs,git	commit	-m	"Add	feature	X"to	save	changes
locally,	and	then,git	push	origin	mainto	upload	to	a	remote	server.GitHubGitHub	is	a	web-based	platform	built	on	top	of	Git,	providing	a	hosted	service	for	Git	repositories	with	additional	collaboration	and	DevOps	features.	It	was	founded	in	2008	and	acquired	by	Microsoft	in	2018.It	offers	a	centralized	place	to	store	Git	repositories,	collaborate	with	teams,	and	integrate	with	development	workflows.Developers	push	Git	repositories	to	GitHub,	use	its	UI	for	collaboration,	and	configure	GitHub	Actions	for	CI/CD.
Its	a	hosted	service	(GitHub.com)	with	paid	plans	for	private	repositories.CI/CD	(via	Actions)	is	less	integrated	than	GitLabs	native	solution,	and	advanced	DevOps	features	require	more	external	tools.Git	vs	GitHub.	SourceExample:	A	team	pushes	code	to	a	GitHub	repo,	opens	a	pull	request	for	review,	and	uses	GitHub	Actions	to	run	tests	automatically.GitLabGitLab	is	an	open-source,	all-in-one	DevOps	platform	that	also	uses	Git	as	its	version	control	foundation.It	provides	a	complete	software	development
lifecycle	solution,	from	version	control	to	CI/CD,	monitoring,	and	security,	all	in	one	platform.Developers	push	Git	repositories	to	GitLab,	define	pipelines	in	.gitlab-ci.yml,	and	use	runners	to	execute	jobs.	The	platform	integrates	everything	version	control,	CI/CD,	and	collaboration	natively.It	is	more	integrated	DevOps	features	out	of	the	box	compared	to	GitHub,	with	flexibility	for	self-hosting.GitLab	vs	GitHub.	SourceExample:	A	team	deploys	a	web	app	by	pushing	code	to	GitLab,	running	automated	tests	and
security	scans	in	the	pipeline,	and	deploying	to	production	with	a	single	click.In	conclusion,	GitLab	offers	an	all-in-one	DevOps	platform	that	streamlines	collaboration,	automation,	and	deployment.	We	need	it	to	enhance	efficiency,	ensure	code	quality,	and	accelerate	delivery	in	an	increasingly	competitive	landscape.At	its	heart	lies	Git,	the	version	control	system	that	powers	its	functionality,	while	its	core	is	the	seamless	integration	of	CI/CD	pipelines,	security,	and	project	management.As	we	embrace	GitLab,
we	should	keep	in	mind	the	importance	of	proper	configuration,	regular	updates,	and	leveraging	its	scalability	to	maximize	its	potential	for	any	team	or	project.Next,	we	will	install	GitLab,	configure	it,	and	create	a	project.	I	will	add	the	link	here	once	I	have	written	it.Read	MoreSources	//www.pagerduty.com/resources/learn/what-is-continuous-integration/	//www.turing.com/blog/github-vs-gitlab-key-differences	Git	isn't	hard	to	learn,	and	when	you	combine	Git	with	GitLab,	you've	made	it	a	whole	lot	easier	to
share	code	and	manage	a	common	Git	commit	history	with	the	rest	of	your	team.	This	tutorial	shows	you	how	it's	done.	How	to	learn	Git	and	GitLab	While	it	takes	time	to	fully	master	a	DevOps	tool	such	as	Git,	any	developer	who	follows	this	10-step	Git	and	GitLab	tutorial	will	become	competent	with	these	popular	DevOps	and	CI/CD	tools	very	quickly.	The	10	steps	to	follow	to	learn	Git	and	GitLab	fast	are	as	follows:	Install	Git	and	create	a	GitLab	account.	Create	a	Git	repository	in	GitLab.	Add	files	and	commits
to	your	GitLab	repo.	Create	new	Git	branches.	Toggle	between	branches	in	GitLab.	Create	a	GitLab	merge	request.	Approve	a	GitLab	merge	request.	Clone	the	remote	GitLab	repo	locally.	Use	the	most	important	Git	commands	locally.	Push	your	local	changes	back	to	GitLab.	Step	1:	Install	Git	and	create	a	GitLab	account	To	get	started	with	Git	and	GitLab,	you	must	first	install	Git	locally	and	register	for	a	GitLab	account.	The	Git	installation	on	Windows	is	straightforward.	Simply	download	and	run	the	installer,
accept	all	the	defaults	and	Git	will	be	installed,	along	with	the	Git	Bash	and	Git	GUI	tools.	To	register	for	a	GitLab	account,	all	you	need	to	do	is	create	a	unique	username,	set	your	credentials	and	validate	your	email	address.	Once	that's	complete,	you	can	move	onto	Step	2	of	this	Git	and	GitLab	tutorial.	Step	2:	Create	a	repository	in	GitLab	When	you	log	in	to	GitLab	for	the	first	time,	you	are	asked	to	create	a	project.	Choose	this	option	to	create	a	new,	blank	Git	repository	on	the	GitLab	server.	Teams	of
developers	use	a	Git	repository	to	perform	the	following	tasks:	Track	their	files	and	their	commit	histories.	Create	branches	and	issue	merge	requests.	Share	code	and	collaborate	with	others.	When	the	form	to	create	a	project	appears,	simply	provide	a	name	for	the	project	and	set	the	GitLab	repo's	visibility	to	public.	Accept	all	the	other	defaults	and	submit	the	form	to	create	your	first	GitLab	repository.	One	of	the	first	steps	in	any	Git	and	GitLab	tutorial	has	to	be	the	creation	of	a	GitLab	repository.	Step	3:	Add
files	and	create	commits	online	The	landing	page	for	your	new	repository	has	a	button	with	a	plus	sign	on	it.	Click	this	button	to	create	a	new	file.	When	you	save	the	file,	you	will	be	forced	to	provide	a	commit	message.	With	each	save,	you	add	to	your	Git	commit	history.	Add	three	new	files	with	the	following	names	and	Git	commit	messages:	alpha.txt	First	Git	commit	bravo.txt	Second	Git	commit	charlie.txt	Third	Git	commit	Once	added,	the	three	files	and	their	commit	messages	display	on	your	GitLab
repository's	homepage.	You	can	click	on	them	to	view	their	content	or	perform	further	edits.	GitLab	allows	you	to	add	files	and	create	Git	commits	online.	Step	4:	Create	Git	branches	and	add	files	Note	that	you	are	currently	on	a	branch	called	main.	Using	the	same	plus	button	as	you	did	in	Step	3,	create	a	new	branch	named	dev.	Add	another	file	named	devo.txt	and	use	'Fourth	Git	commit'	for	the	message.	This	new	file	will	be	added	to	the	dev	branch.	It	will	not	be	visible	on	the	main	branch.	Step	5:	Navigate
between	Git	branches	Use	the	drop-down	box	to	toggle	between	the	dev	and	the	main	branch.	Notice	how	the	devo.txt	file	is	on	the	dev	branch,	but	it	is	not	on	the	main	branch.	Git	branches	allow	developers	to	do	isolated	development	separately	and	independently	of	the	work	of	other	developers.	This	encourages	creativity,	experimentation	and	chance-taking.	If	an	experiment	doesn't	work,	the	branch	can	be	deleted.	If	the	creative	endeavor	is	a	success,	the	new	branch	can	be	merged	into	the	main	branch	for
others	to	see.	The	devo.txt	file	is	only	in	the	dev	branch.	A	git	merge	must	be	performed	for	it	to	be	visible	on	the	main	branch	on	GitLab.	Step	6:	Create	a	GitLab	merge	request	To	bring	the	dev	and	main	branches	in	sync,	click	the	blue	Create	merge	request	button	at	the	top	of	the	screen.	Fill	out	the	title	and	the	description	and	submit	the	merge	request	form.	Merges	can	be	performed	locally	or	through	GitLab	merge	requests	online.	Step	7:	Accept	a	merge	request	in	GitLab	When	you	open	the	GitLab
navigation	bar	on	the	left,	you	will	see	a	new	Merge	request	listed.	Click	the	Merge	requests	link	and	then	Approve	to	approve	it.	If	you	like	Devo,	give	it	a	thumbs-up	as	well.	Leave	the	"'Delete	source	branch"	option	selected	and	click	Merge.	When	you	return	to	the	homepage	of	your	repository,	notice	that	the	devo.txt	file	is	in	the	main	branch,	and	the	dev	branch	is	deleted.	Learning	how	to	approve	a	merge	request	is	an	important	step	in	any	Git	an	GitLab	tutorial.	Step	8:	Clone	the	GitLab	repository	A	clone
of	a	GitLab	repository	brings	all	the	files	and	branches	on	the	server	down	to	the	developer's	local	machine.	Most	Git	operations	happen	locally,	in	tandem	with	local	software	development.	Find	the	GitLab	URL	Click	the	blue	Code	button	on	the	repository's	GitLab	page	and	copy	the	HTTPS	GitLab	URL.	Then	open	Git	Bash	in	the	folder	where	you	want	to	store	the	folders	and	files	for	this	repository	and	issue	the	git	clone	command:	git	clone	After	the	clone	command	completes,	you	can	find	all	the	files	in	your
Git	repository	under	a	subdirectory	with	the	same	name	as	your	GitLab	project.	When	you	clone	a	GitLab	repo,	Git	makes	all	the	files	in	that	repository	available	on	your	local	machine.	Step	9:	Perform	standard	Git	operations	With	the	GitLab	repository	cloned	locally,	you	can	add	files,	edit	files,	delete	files	and	play	around	with	various	Git	porcelain	commands	including	the	following:	Fetch,	merge	and	pull	are	three	of	the	important	porcelain	Git	commands	with	which	beginners	should	become	comfortable.
Step	10:	Push	your	changes	back	to	GitLab	When	you	are	done	with	local	development,	you	can	push	your	updated	set	of	local	commits	back	to	the	server	with	a	push	command:	git	push	origin	The	first	time	you	push	using	HTTPS,	make	sure	you	are	logged	into	GitLab	on	your	default	web	browser.	You	must	be	authenticated	to	push	changes	into	a	GitLab	repository.	GitLab	authentication	troubleshooting	On	a	Windows	machine,	GitLab	will	try	to	validate	your	credentials	using	OAuth	to	log	you	in	to	the	server.
If	the	git	push	attempt	results	in	a	403	error,	you	might	need	to	obtain	a	GitLab	personal	access	token	and	authenticate	with	that.	If	authentication	continues	to	be	an	issue,	you	could	alternatively	create	SSH	keys	for	GitLab	and	authenticate	over	secure	shell.	GitLab	is	a	full-featured	and	powerful	CI/CD	platform	built	around	the	popular	Git	tool.	Learning	how	to	use	Git	with	GitLab	is	the	first	step	to	take	advantage	of	GitLab's	many	features.	Cameron	McKenzie	has	been	a	Java	EE	software	engineer	for	20
years.	His	current	specialties	include	Agile	development,	DevOps	and	container-based	technologies	such	as	Docker,	Swarm	and	Kubernetes.	View	All	Videos	If	you	are	looking	for	a	better	way	to	organize	your	project	files,	you	should	consider	using	GitLab.	The	beauty	of	GitLab	is	that	it	allows	all	team	members	to	collaborate	in	all	phases	of	a	project,	simplifying	software	development	for	all	involved.	In	this	GitLab	tutorial	for	beginners,	you	will	learn	how	to	use	GitLabs	main	features	to	manage	your	files	and
increase	productivity	(and	even	learn	how	Gitlab	time	tracking	works	with	a	help	of	Gitlab	time	tracking	integration!)	GitLab	Definition	GitLab	is	a	web-based	Git	repository	that	allows	software	development	teams	to	plan,	code,	test,	deploy,	and	monitor	product	changes	in	one	place.	Git	is	a	versioning	system	that	tracks	changes	and	enables	pushing/pulling	updates	using	remote	resources.	GitLab	offers	free,	open,	and	private	repositories,	along	with	issue	tracking	and	wikis.	It	helps	teams	collaborate
throughout	the	software	development	lifecycle,	enhancing	product	value	and	user	satisfaction.	Essential	GitLab	Basics	Well	start	with	the	GitLab	tutorial	basicsits	main	features,	pricing,	installation,	and	how	to	use	it.	Planning	GitLab	offers	powerful	planning	tools	to	keep	your	team	in	sync.	The	platform	enables	planning	and	management	through	epics,	milestones,	and	groups,	allowing	teams	to	organize	and	track	GitLab	project	progress.	Coding	GitLab	tutorial	wouldnt	be	complete	without	mentioning	that
GitLab	allows	you	to	create,	view,	and	manage	project	data	and	code	through	branching	tools.	The	platform	helps	you	plan,	organize,	align,	and	then	track	project	work	to	ensure	all	team	members	are	working	on	the	right	tasks.	Verification	Ensure	strict	quality	standards	are	enforced	for	production	code	with	automatic	reporting	and	testing.	GitLabs	capabilities	enable	a	range	of	testing	types	to	provide	quick	feedback	to	testers	and	developers	about	their	codes	quality.	Package	management	GitLab	offers
built-in	package	management,	allowing	teams	to	package	applications	and	dependencies,	build	artifacts	and	manage	containers	easily.	Security	GitLab	provides	a	range	of	security	capabilities,	including	Dynamic	Application	Security	Testing	(DAST),	Static	Application	Security	Testing	(SAST),	Dependency	Scanning,	and	Container	Scanning,	enabling	teams	to	create	and	maintain	secure	applications.	Releasing	software	GitLab	enables	you	to	view,	sort,	and	automate	the	release	of	applications,	which	significantly
shortens	the	delivery	lifecycle	and	streamlines	processes.	GitLabs	integrated	Continuous	Development	solution	allows	you	to	release	software	with	zero-touch,	regardless	of	the	number	of	servers.	Configuration	GitLab	allows	you	to	configure	applications	and	infrastructure,	as	strong	integration	to	Kubernetes	reduces	the	effort	required	to	define	and	configure	supporting	infrastructure.	Monitoring	GitLab	enables	you	to	reduce	the	frequency	and	severity	of	software	incidents,	so	you	can	release	software
knowing	that	all	will	go	to	plan.	Business	performance	GitLab	gives	you	valuable	insights	into	how	your	business	is	performing.	You	can	manage	and	optimize	team	performance	and	the	software	delivery	lifecycle	with	metrics	to	streamline	processes	and	increase	the	frequency	of	software	releases.	For	example,	you	can	gain	insights	into	the	performance	of	individual	users,	subgroups,	and	projects	such	as	triage	hygiene,	issues	created	or	closed	in	a	given	period,	the	average	time	for	merge	requests	to	be
completed,	and	more.	Plus,	you	can	generate	DevOps	reports,	usage	trends	overviews,	and	audit	reports,	allowing	you	to	determine	if	changes	are	needed	to	improve	business	processes.	Integrations	Did	you	know	that	you	can	utilize	GitLab	time-tracking	integrations?	For	example,	if	you	need	employee	time	tracking	functionality	to	monitor	the	time	you	and	your	team	spend	on	the	issues	and	merge	requests,	but	you	also	need	access	to	a	time	clock	app/timesheet	app,	work	hours	tracker,	and	an	attendance
tracker,	consider	integrating	GitLab	with	a	time	tracker.	You	can	also	use	those	integrations	to	extract	Gitlab	time	tracking	reports	to	facilitate	your	project	management	process.	Hosting	&	installing	Many	prefer	to	use	GitLab	in	Linux,	as	GitLab	software	is	custom-made	for	the	open-source	operating	system	and	is	mature	and	scalable.	You	can	install	GitLab	on	Windows,	but	there	are	some	restrictions.	To	get	around	this,	you	can	install	GitLab	Runner.	Once	you	have	installed	GitLab,	created	an	account,	and
logged	in,	you	will	be	presented	with	various	options,	including	creating	a	project	or	a	group.	You	can	also	explore	public	GitLab	projects	that	may	pertain	to	your	work.	Gitlab	pricing	Feature	Free	Premium	Ultimate	Price	$0/user/month	$29/user/month	(billed	annually)	Contact	Sales	Storage	5GB	5GB+	More	than	5GB+	Transfer	10GB/month	10GB+/month	More	than	10GB+/month	CI/CD	minutes	400	10,000	50,000	Users	per	namespace	5	More	allowed	Unlimited	+	free	guests	Code	review	Basic	Faster
reviews	Faster	reviews	Advanced	CI/CD	No	Yes	Yes	Security	&	compliance	No	No	Advanced	testing	&	compliance	pipelines	Planning	tools	Basic	project	planning	Enterprise	agile	planning	Portfolio	&	value	stream	management	Support	Community	Priority	support	Full	support	Using	GitLab	Effectively	If	you	havent	used	GitLab	before,	it	may	appear	intimidating	at	first.	But	dont	worry,	its	a	learning	curveafter	using	the	platform	for	a	while,	youll	learn	the	ins	and	outs	of	GitLab	and	it	will	soon	become	second
nature.	Using	this	GitLab	tutorial,	you	should	be	able	to	quickly	learn	how	to	navigate	the	platform.	How	to	create	a	project	The	majority	of	work	done	on	GitLab	happens	within	a	project,	as	code	and	files	are	saved	in	projects.	To	create	a	project	in	GitLab,	you	select	Menu	>	Project	>	Create	new	project.You	will	then	be	presented	with	the	Create	a	new	project	page,	where	you	can	either	create	a	new	project	or	create	a	project	from	a	built-in	template,	custom	template,	or	a	HIPAA	audit	protocol
template.Alternatively,	if	you	are	a	GitLab	administrator,	you	can	import	a	project	from	another	repository.	How	to	create	a	project	from	a	template	A	built-in	GitLab	project	template	fills	a	new	project	with	files	to	help	get	you	started.	To	create	a	project	from	an	established	built-in	template,	select	Menu	>	Projects	>	Create	new	project	and	select	Create	from	template.Next,	click	the	Built-in	tab	and	view	template	previews.Once	you	find	a	suitable	template,	click	Use	template.Next,	enter	the	project	details,
including	Project	name,	Project	slug,	and	Project	description.	You	can	also	change	viewing	and	access	rights	by	changing	the	project	Visibility	level.To	create	a	GitLab	project	from	a	custom	template,	follow	the	above	steps,	but	rather	than	Built-in,	choose	Instance	or	Group	tab.	You	can	preview	templates,	and	once	you	have	found	a	suitable	template,	select	Use	template	and	enter	the	project	details.	How	to	create	a	group	You	create	groups	in	GitLab	to	manage	one	or	more	projects	simultaneously	and	manage
permissions.	If	someone	has	access	to	the	GitLab	group,	they	will	have	access	to	all	projects	within	the	group.	Another	benefit	of	creating	a	group	is	that	you	can	view	all	issues	and	merge	requests	for	all	projects	in	the	group	and	access	analytics	for	all	activities	within	your	chosen	group.	To	create	a	group	in	GitLab,	you	select	Menu	>	Groups	>	Create	group.Then,	to	the	left	of	the	search	box,	you	select	the	plus	sign	and	click	New	group.Select	Create	group	and	enter	a	group	name.	Be	mindful	that	some
group	names,	if	used,	would	be	in	conflict	with	existing	routes	used	by	GitLab.	As	a	result,	there	are	some	reserved	names	that	you	cannot	use.Next,	enter	a	path	for	your	group	in	Group	URL,	which	is	used	for	the	namespace,	a	unique	name	for	a	user,	group,	or	subgroup.Then,	choose	a	visibility	level	(public,	internal	or	private)	and	personalize	the	group	by	defining	your	role,	who	will	be	using	the	group,	and	what	the	group	will	be	used	for.Then,	all	that	is	left	to	do	is	invite	all	relevant	GitLab	members	to	join
the	group.Project	forking	workflow	When	working	in	a	Git	repository,	it	is	recommended	that	you	use	branching	strategies	to	manage	work	effectively.	But	if	you	do	not	have	write	access	to	the	repository	of	your	choice,	you	can	create	a	fork.	A	fork	is	a	duplicated	version	of	the	original	repository	where	you	can	make	changes	without	affecting	the	original	project.	To	create	a	fork	in	an	existing	GitLab	project,	select	Fork	on	the	projects	homepage.Then,	if	you	want	to,	edit	the	Project	name.For	the	Project	URL,
select	the	namespace	where	your	fork	should	reside.Next,	add	a	Project	slug,	which	is	added	to	the	fork	URL.	Please	note	that	it	must	be	unique	in	the	chosen	namespace.If	you	like,	you	can	add	a	Project	description	to	provide	context.Then,	you	need	to	select	the	Visibility	level	for	your	new	fork.Select	Fork	project.	Once	you	have	done	that,	you	will	be	redirected	to	the	new	forks	page.If	you	find	that	you	need	to	remove	a	fork,	select	Settings	>	General	>	Advanced.Then,	select	Remove	fork	relationship	and
confirm	this	action	by	typing	the	project	path.Please	note	that	only	project	owners	have	the	necessary	permissions	to	remove	a	fork	relationship	in	GitLab.	GitLab	Tutorial:	Final	Thoughts	While	there	are	many	great	GitLab	alternatives,	GitLab	remains	a	solid	choice	for	developers	thanks	to	its	built-in	compliance	tools,	scalability,	and	flexible	deployment	options.	This	GitLab	tutorial	covered	the	basicscreating	projects,	groups,	and	forks.	Once	youre	comfortable	with	those,	theres	still	more	to	explore.	We	hope
this	guide	helped	you	get	up	and	running	quickly!	Track	time,	stay	on	budget,	analyze	reports	and	automate	payroll.	Gitlab	CE	or	Community	Edition	is	an	open-source	application	used	to	host	your	Git	repositories.	It	offers	you	the	advantage	of	keeping	the	data	on	your	server	for	your	team	and	your	clients.	It	offers	you	total	control	of	your	codebase	while	providing	an	easy	to	use	interface	for	you	and	your	team	members.In	this	guide,	we	will	cover	how	to	install	your	Git	repository	using	Gitlabs	free	offering,
the	Community	Edition.	Gitlab	also	offers	paid	versions	of	the	software	which	offer	advanced	features	like	Merge	approvals,	Roadmaps,	Portfolio	Management,	Disaster	recovery,	Container	scanning	and	lots	more.	You	can	upgrade	to	it	if	you	want	those.PrerequisitesAn	Ubuntu	18.04	based	server	with	a	non-root	sudo	user	and	a	basic	firewall.	You	can	followour	tutorial	for	doing	the	same.	Even	though	the	tutorial	was	written	for	Ubuntu	16.04,	the	steps	are	the	same	for	18.04.You	need	a	VPS	with	minimum	2
CPU	cores	and	8GB	RAM	according	to	thespecified	hardware	requirements	for	Gitlab	CE	which	will	support	100	users.	Even	though	you	can	substitute	swap	space	for	RAM,	it	is	not	recommended	since	the	application	will	run	slower.Step	1	Installing	DependenciesBefore	we	begin	to	install	Gitlab,	you	will	need	to	make	sure	your	server	has	certain	software	installed	so	that	Gitlab	can	run	properly.	Run	the	following	commands	to	install	the	dependencies.$	sudo	apt	update$	sudo	apt	install	ca-certificates	curl
openssh-server	ufw	apt-transport-https	-ySome	of	the	software	above	may	be	pre-installed	for	you.Next,	you	will	need	postfix	to	send	notification	emails.	If	you	want	to	use	another	solution,	then	skip	this	step	and	you	can	configure	an	external	SMPT	server	after	you	have	installed	Gitlab.$	sudo	apt	install	postfix	-yFor	the	postfix	installation,	selectInternet	Sitewhen	prompted.	Enter	the	domain	name	you	are	going	to	use	for	your	Gitlab	server	on	the	next	screen.Step	2	Configure	FirewallBefore	proceeding	ahead,
we	need	to	configure	the	ufw	firewall	we	installed	in	the	previous	step.	Before	we	enable	and	configure	the	firewall,	we	need	to	enable	SSH	so	that	we	dont	get	locked	out	of	our	server.$	sudo	ufw	allow	OpenSSHIt	is	safe	now	to	enable	the	firewall.	Just	enterywhen	presented	with	the	prompt.$	sudo	ufw	enableWe	need	to	enable	http,	https,	and	Postfix	for	Gitlab	to	operate.$	sudo	ufw	allow	http$	sudo	ufw	allow	https$	sudo	ufw	allow	PostfixWe	need	to	check	the	status	that	everything	is	working	fine.$	sudo	ufw
statusYou	should	see	the	following	output	which	will	tell	you	everything	is	working	fine.Status:	activeTo	Action	From--	------	----OpenSSH	ALLOW	Anywhere80/tcp	ALLOW	Anywhere443/tcp	ALLOW	AnywherePostfix	ALLOW	AnywhereOpenSSH	(v6)	ALLOW	Anywhere	(v6)80/tcp	(v6)	ALLOW	Anywhere	(v6)443/tcp	(v6)	ALLOW	Anywhere	(v6)Postfix	(v6)	ALLOW	Anywhere	(v6)Step	3	Add	the	repository	and	install	GitlabRun	the	following	command	to	add	the	following	repository.$	curl	|	sudo	bashInstall	the	Gitlab	CE
package.	Replace	example.github.com	with	the	domain	you	will	be	using	for	your	Gitlab	install.	If	you	want	Gitlab	to	automatically	install	an	HTTPS	certificate	for	you	using	Lets	Encrypt,	choosehttpsin	the	command	below.	If	you	want	to	use	your	certificate	or	dont	want	to	use	https,	useHTTPbelow.$	sudo	EXTERNAL_URL="	"	apt-get	install	gitlab-eeEven	though	we	talked	about	the	community	edition	in	the	beginning,	yet	we	are	installing	the	Enterprise	edition	here.	It	is	because,	if	in	future	you	need	to
upgrade	to	the	paid	version,	it	can	be	done	via	a	single	click.	If	you	install	the	community	edition,	then	to	switch	to	the	enterprise	edition	you	will	need	to	do	a	manual	upgrade	which	can	lead	to	downtime.	Enterprise	edition	without	the	license	will	behave	just	like	the	Community	edition	and	is	the	recommended	way	to	install.Step	4	Run	the	InstallerNavigate	to	the	URL	chosen	in	the	previous	step	in	your	web	browser.	You	will	be	redirected	to	Gitlabs	password	reset	screen.	Provide	a	password	for	Gitlab
Administrators	account.You	will	be	taken	to	the	login	screen.	Userootas	the	username	and	password	you	just	chose	to	log	in.Step	5	Configure	PostfixThis	tutorial	will	just	enable	Postfix	for	sending	transactional	emails.	If	you	want	to	run	a	full-fledged	mail	server	capable	of	handling	incoming	and	outgoing	mails,	then	you	will	need	to	do	a	lot	more	configuration	which	is	out	of	the	scope	of	this	tutorial.	Gitlab	Docs	provide	a	good	way	to	start	where	you	can	learn	how	to	configure	Postfix	for	receiving	mails.First,
we	need	to	check	the	hostname	for	our	machine.	This	is	the	name	you	were	probably	asked	before	you	had	set	up	your	server.	If	you	want,	you	can	change	it	here.	We	have	chosengitlab-serverfor	our	purposes.$	sudo	nano	/etc/hostnameExit	the	editor	by	pressing	Ctrl	+	X.	Now	we	need	to	set	a	host	file.$	sudo	nano	/etc/hostsReplace	example.com	and	165.22.194.39	with	your	domain	name	and	IP	address	respectively.127.0.0.1	localhost127.0.0.1gitlab-server165.22.194.39	gitlab-server.example.com	gitlab-
serverPressCtrl	+	Xto	exit	when	you	are	done	and	enterYfor	saving	the	changes.InstallMailutils.	If	for	some	reason	you	havent	installed	postfix	in	step	1,	this	will	install	it	for	you.	Mailutil	will	allow	us	to	send	mails	via	command	line.$	sudo	apt	install	mailutilsWe	need	to	make	few	changes	to	Postfixs	configuration	file	(/etc/postfix/main.cf).	For	this,	we	will	use	thePostconftool.	The-eparameter	tells	postconf	to	make	changes	in	themain.cffile.$	sudo	postconf	-e	'relayhost	=	[smtprelay.snel.com]:587'$	sudo
postconf	-e	'smtp_tls_security_level	=	may'$	sudo	postconf	-e	'myhostname	=	gitlab-server.example.com'First,	all	outgoing	mails	will	go	via	Snels	SMTP	server.	Second,	the	TLS	security	level	is	set	tomaywhich	means	TLS	will	be	used	if	the	remote	server	supports	it	or	else	plaintext	will	be	used.	This	ensures	delivery	to	mail	servers	that	dont	have	TLS	enabled.	And	last,	the	hostname	entry	is	set	to	the	domain	name	you	chose	earlier.Restart	Postfix.$	sudo	service	postfix	restartTest	the	email	sending
functionality.$	echo	"This	email	confirms	that	Postfix	is	working"	|	mail	-s	"Testing	Postfix"	If	you	receive	an	email	at	your	domain,	it	means	Postfix	is	working	perfectly.	If	you	dont	want	to	use	Postfix	and	want	to	go	with	a	simple	SMTP	server,	proceed	toGitlab	Docson	how	to	configure.Step	6	Configure	Gitlab	ProfileLog	in	to	your	Gitlab	installation.	Click	on	the	user	icon	on	the	upper	right-hand	corner	to	bring	up	the	drop-down	menu	and	select	settings.You	will	be	taken	to	your	Profile	settings
page.	Add	your	name	and	e-mail	here.	You	will	need	to	confirm	your	email	address	for	it	to	be	updated.	You	can	also	add	more	information	here	about	yourself	if	you	want.ClickUpdate	Profile	Settingswhen	you	are	done.Step	7	Change	User	NameNext,	we	need	to	change	our	username	fromrootto	something	else	as	root	is	a	pretty	common	guessable	username.	Click	onAccount	in	the	left	sidebar.Change	the	user	to	whatever	username	you	want	to	keep.	Click	onUpdate	usernameto	finish.	You	should	also	enable
two-factor	authentication	here	for	more	security.Step	8	Restrict	Sign-upsBy	default,	Gitlab	installations	allow	anyone	to	sign	up.	If	you	dont	want	that,	you	should	disable	it.	Click	on	the	wrench	looking	icon	in	the	top	bar	to	access	the	Administration	area.To	adjust	settings,	click	onSettingsin	the	left	sidebar.Here,	scroll	down	to	theSign-up	restrictionsand	click	on	theExpandbutton.	Uncheck	theSign-up	enabledbox	and	click	onSave	changeswhen	finished.You	will	still	be	able	to	add	new	users	via	the	Admin
interface.	This	will	disable	only	public	signups.Step	9	Add	SSH	KeyThe	last	step	is	adding	our	SSH	key.	If	you	have	an	SSH	key,	you	can	skip	the	following	command.	If	you	dont	have	one,	you	can	create	one	using	the	following	command.$	ssh-keygenThis	command	is	common	to	Mac	OS,	Linux	and	Git	Bash/WSL	on	Windows.	Accept	the	defaults	and	provide	a	password	when	asked	for	to	secure	the	key.Generating	public/private	rsa	key	pair.Enter	file	in	which	to	save	the	key	(/c/Users//.ssh/id_rsa):Enter
passphrase	(empty	for	no	passphrase):Enter	same	passphrase	again:Your	identification	has	been	saved	in	/c/Users//.ssh/id_rsa.Your	public	key	has	been	saved	in	/c/Users//.ssh/id_rsa.pub.The	key	fingerprint	is:SHA256:j8Pd5kXM04+tFoppivHaYN5gjYE95Rd4Fc4YXz2MqYE	@WIN10DESKTOPThe	key's	randomart	image	is:+---[RSA	3072]----+|	o	o.=.	||	E	O	+	o.||	o	+	*	.||	o	o	.	o	o	.	||	.	+	S	.	=	.||	*	=	.	..+.||	B	=	ooo.o.o||	+	O	.+o....	||	+.=o	...	|+----[SHA256]-----+You	can	display	your	public	key	via	the	following
command$	cat
~/.ssh/id_rsa.pub4FwcEp0IE7XW5yHDin/uyt5rxbZzNwQlg33+b453ocBS18tsUbqoJfgS7C2QcP/iWct0QpiY9BcLJ6GL6JolUQQmFm1TV5M29hFjT9pHe95QBXm1MfZH+yO6Fqz9fUf6isFYQbPJyZrJMpTu31opKiU50YB3I2UG6oyIpJedutXDqPln6f+HazL1eK7KqreghnnrN1vpyxPU7qoWT307yknii74zizqUKebfpaePGiFuT/q/MgI5LmV9pSLIz2PWjTxRgrblmEZem847SiBw0JVhm1q2D3wv7EOsQBm1HConl8FEewuQNw5KcQxj4gxuBUWFPmbI7f2cGtjQj9XR6bSSPvowoDmS+BR6r1sT+ppJgS/Oe50MnzlmgJq4joTRUaONJ+Oe0=
@WIN10DESKTOPGo	back	to	your	Profiles	Settings	area	and	access	SSH	keys	from	the	sidebar.Paste	the	SSH	key	in	the	box	provided	and	click	onAdd	Keyto	proceed.Now	you	can	create	and	commit	to	your	repositories	without	having	to	provide	your	Gitlab	credentials.ConclusionCongratulations,	you	should	now	be	able	to	create	projects	and	repositories	on	your	own	Ubuntu	18.04	server	using	Gitlab.Was	this	article	helpful?Like	17	Dislike	2	Do	you	want	to	organize	your	project	files	using	GitLab?	If	yes,	then
you	are	at	the	right	place.	This	comprehensive	GitLab	tutorial	will	help	you	to	learn	from	scratch.	In	an	organization,	there	are	lots	of	files	and	folders	are	required	to	maintain	a	project.	GitLab	places	a	crucial	role	to	organize	these	files	which	are	held	by	different	people	at	different	places.GitLab	is	a	robust	and	well-integrated	Continuous	Integration	and	Continuous	Deployment	(CI/CD)	pipeline	that	helps	developers	to	track	changes	in	the	files.	It	was	launched	in	2014	by	GitLab	Inc.	came	with	ultimate
features	that	make	developers	work	easier.	Now,	lets	go	further	to	learn	more	about	GitLab.GitLab	Tutorial	for	BeginnersWhat	is	GitLabGitLab	is	an	open-source	web-based	Git	repository	that	is	a	complete	DevOps	platform	that	allows	professionals	to	work	on	all	kinds	of	tasks	in	a	project	such	as	planning,	code	management,	monitoring,	and	security.	It	empowers	team	productivity	and	improves	the	product	life	cycle,	which	adds	value	to	the	customer.	GitLab	is	a	DevOps	platform	that	allows	monitoring	source
code,	sharing	work	on	multiple	projects,	and	builds	more	optimized	software.GitLab	helps	to	manage	Git	repositories	on	a	centralized	server.Git	Commands	are	used	in	the	Git	repositoryIt	offers	free	public	and	private	repositories,	wikis,	and	issue-tracking.GitLab	provides	a	Continuous	Integration	(CI)	system	to	manage	projects	and	User	Interfaces	with	features	of	GitLab.It	is	a	user-friendly	web	interface	that	increases	the	speed	of	working	with	Git.Inclined	to	build	a	profession	as	GIT	Developer?	Then	here	is
the	blog	post	on	Git	Training	Course.Git	CommandsLets	check	out	some	basic	Git	commands	that	are	used	to	work	with	Git.To	check	the	version	of	the	Git,	use	the	command	below	$	git	--versionTo	add	a	Git	username	that	is	to	identify	the	author,	use	the	command	below-	$	git	config	--global	user.name	USERNAMETo	verify	the	username,	use	the	command	below	$	git	config	--global	user.nameTo	set	the	email	address,	use	the	command	below-	$	git	config	--global	user.email	email_address@example.comTo
verify	the	email,	use	the	command	below-	$	git	config	--global	user.emailTo	add	all	the	files,	use	the	command	below-	$	git	add	.To	view	changes	in	red	color	and	add	the	file,	use	the	command	below-	$	git	add	file-nameTo	check	the	changes	made	in	the	file,	use	the	command	below-	$	git	statusTo	check	the	entire	information	list,	use	the	command	below-	$	git	config	--global	--listTo	create	a	new	branch,	use	the	command	below-	$	git	checkout	-b	branch-nameTo	switch	from	one	branch	to	another,	use	the
command	below-	$	git	checkout	branch-nameTo	pull	the	latest	changes	to	the	master	branch,	use	the	command	below-	$	git	checkout	masterTo	fetch	the	latest	changes	to	the	working	directory,	use	the	command	below	Here,	NAME-OF-BRANCH	might	be	an	existing	branch	or	master	branchTo	send	changes	to	the	master	branch,	use	the	command	below-	$	git	push	origin	branch-nameTo	delete	all	changes	including	untracked	files,	use	the	command	below-	$	git	clean	-fTo	merge	the	different	branch	with	the
master	branch,	use	the	command	below-	$	git	checkout	branch-name	$	git	merge	masterHow	to	log	in	to	GitLab?To	log	in	to	the	GitLab,	do	the	following	steps:Open	about.gitlab.comIf	you	have	an	account,	Sign	in	or	else	Register.You	will	get	a	Welcome	page	of	GitLab,	as	shown	in	the	figure.Click	to	Create	a	project	where	developers	work	most	in	GitLab.	Here	we	can	create	projects,	configure	projects,	and	can	add	files.Create	a	group	in	GitLab	helps	organize	your	projects	and	grants	access	to	multiple
projects	more	quickly	if	we	had	dozens	of	documents	on	policies	and	best	practices	for	a	developing	team.Explore	public	projects	helps	to	access	a	massive	library	of	public	GitLab	projects.	GitLab	supports	if	you	want	to	access	public	projects	to	find	out	how	to	organize	or	to	grab	a	copy	of	open	source	software	and	contribute.Learn	more	about	GitLab	helps	to	access	GitLabs	documentation,	guides	to	using	the	platform.	It	helps	to	create	a	project	using	CI/CD	pipelines.	Now,	lets	see	How	to	create	a	project.
How	to	Create	a	Project?To	create	a	project	in	GitLab,	do	the	following	steps:On	the	above	GitLab	welcome,	Click	on	Create	a	project.We	get	a	four	options	page	to	create	a	project	in	GitLab,	as	shown	in	the	figure.Firstly,	lets	create	a	Blank	project.Enter	the	Project	name	and	Enable	Private	Visibility	level,	as	shown	in	the	figure,	and	then	click	Create	project.An	empty	repository	project	has	been	created,	as	shown	in	the	figureNow	open	Git	Bash	and	run	the	following	commands	that	help	to	create	a	Git	file,
configure	the	file,	add	a	file,	and	push	the	file	to	the	repository.Configure	your	username,	using	the	command	below$	git	config	--global	user.name	Keerthana_Jonnalagadda?Configure	your	email,	using	the	command	below.$	git	config	--global	user.email	Youremail@address.com?Make	a	directory	by	using	the	command	below$	mkdir	GLTutorial?Configure	the	directory	by	using	the	command	below.$	cd	GLTutorial?You	will	get	an	empty	folder	link	representing	a	folder	is	created./c/Users/Lenovo/GLTutorial?Now
initialize	the	folder	by	using	the	command	below.$	git	init?Now	lets	create	a	file	by	using	the	command	below$	touch	Mindmajix.txt?Run	a	Notepad	file	by	using	the	command	below$	notepad	Mindmajix.txt?You	will	get	a	Notepad	file	naming	Mindmajix.	Write	a	few	words	in	the	file,	as	shown	in	the	figure.Check	the	status$	git	statusAdd	the	file$	git	add	.?Commit	the	file$	git	add	.?Check	the	status$	git	add	.?Now	go	to	GitLab,	click	Projects	dropdown	in	the	menu,	and	open	Your	Projects,	as	shown	in	the
figure.Add	remote	origin$	git	remote	add	originKeerthana_Jonnalagadda/gitlab-tutorial.?Fetch	the	file$	git	remote	-v?Push	the	file$	git	push	-u	origin	master	7.Open	GitLab,	check	Your	projects,	and	you	can	see	the	Mindmajix.txt	file	which	is	created	to	push	into	the	GitLab	as	shown	in	the	figure	Click	on	the	Mindmajix.txt	file.	8.You	can	see	the	data	in	the	file,	as	shown	in	the	figure.	Likewise,	we	can	push	our	files,	folder,	and	records	into	GitLab.Create	from	TemplateWe	can	also	create	a	project	using	24	in-
built	templates	of	different	sources	like	Ruby	on	Rails,	Spring,	iOS	Swift,	.NET	Core,	and	many	more	as	shown	in	the	figure.From	the	list	available	in-built	templates,	click	Preview	to	view	the	template	source	and	click	Use	template	to	start	creating	the	template.	Rest	the	process	is	the	same	as	creating	a	blank	project.[]Create	from	Importing	a	ProjectWe	can	import	projects	from	various	Git	and	other	sources	to	GitLab,	as	shown	in	the	figure.Create	using	CI/CD	external	repositoryInstead	of	moving	the	entire
project	to	GitLab,	we	can	connect	to	an	external	repository	using	a	CI/CD	external	repo.Choose	GitHub	or	Repo	by	URL	to	connect	with	an	external	repositoryHow	to	Create	a	Group	in	GitLab?The	group	is	a	collection	of	projects	that	helps	to	manage	and	organize	the	projects	like	a	folder.	It	helps	to	maintain	the	group	members	access	and	permissions	for	each	project	in	the	group.	To	create	a	group,	do	follow	the	steps.Open	GitLab,	click	Groups	on	the	top	menu	bar,	and	then	click	on	New	group	to	create	a
group	as	shown	in	the	figureYou	get	a	create	group	page,	in	that	Enter	your	Group	name	and	click	Create	group,	as	shown	in	the	figure.The	group	was	successfully	created.	Now,	click	on	New	Project	to	create	projects	in	the	group,	as	shown	in	the	figure.Enter	the	project	name	and	enable	Private	visibility	level	as	shown	in	the	figureThe	project	Mindmajix	is	successfully	created.Go	back	to	the	groups	and	check	the	project	is	created	as	in	the	figureWe	can	also	add	an	avatar	to	our	project	and	group	name.	Open
project,	click	on	Settings	and	then	click	General	as	shown	in	the	figureA	general	settings	page	opens.	Choose	project	avatar	and	select	your	avatar	and	click	Save	changes.You	can	see	the	project	avatar	is	updated.We	can	also	add	an	avatar	while	creating	the	project.Add	users	to	the	groupAdding	users	to	the	group	makes	an	organized	work	that	benefits	time	to	access	files.	Admin	can	restrict	the	access	of	the	user	and	can	even	schedule	a	time	for	a	deadline	to	work	on	the	project.	To	add	users	to	the	group,	do
the	following	steps.Open	your	Group,	click	on	Members	in	the	groups	dashboardMembers	page	opens,	as	shown	in	the	figure.Enter	GitLab	member	or	Email	address	to	invite	into	the	group.We	can	choose	the	role	of	a	particular	member	such	as	Guest,	Reporter,	Developer,	Maintainer,	and	Owner.We	can	schedule	the	access	expiration	data	that	helps	to	organize	the	work	in	a	schedule.And	then	Click	Invite	to	add	the	member	into	the	group.This	way,	we	can	invite	members	or	users	to	the	group.Changing	the
owner	of	the	groupThe	ownership	of	group	members	must	have	at	least	one	owner.	Changing	the	owner	of	a	group	is	only	possible	by	one	owner.	To	change	the	owner	of	the	group,	do	the	following	steps.As	a	current	ownerGo	to	groups,	click	Members	in	the	group	dashboard.Assign	different	user	Owner	permissions.Have	a	new	owner	sign	in	and	remove	Owner	permission	from	you(owner).As	an	administrator,Go	to	groups,	click	Members	in	the	group	dashboard.Assign	different	user	Owner	permissions.Now
refresh	the	page.	We	can	remove	permissions	from	the	original	owner.Remove	members	from	the	groupIn	GitLab,	an	owner	is	a	person	who	manages	the	users	of	the	group.	So,	only	users	with	the	permission	of	the	owner	can	also	manage	the	group	members.To	remove	a	member	from	the	group,	do	the	following	steps:In	the	group,	click	Members	in	the	group	dashboard.Click	the	Delete	button	which	is	next	to	a	group	member	to	remove.	A	remove	member	window	appears.Enable	Also	unassign	this	user	from
related	issues	and	merge	requests	checkbox.Click	Remove	member.Project	forking	workflowA	fork	is	a	copy	of	an	original	repository	that	we	make	in	the	namespace	and	can	apply	changes	later	without	affecting	the	original	project.	It	takes	a	few	steps	to	fork	a	project	in	GitLab.Create	a	forkTo	create	a	fork,	do	the	following	steps:On	the	project	page,	pick	a	project	and	click	on	the	fork	icon	as	shown	in	the	figureSelect	the	project	to	create	a	copy	of	the	project.The	project	has	been	forked	successfully.Request
for	mergingA	Merge	Request	is	a	request	to	merge	one	branch	to	another,	which	means	when	we	create	a	new	feature,	change	the	files,	and	push	into	the	GitLab;	you	need	to	create	a	merge	request.	This	process	helps	to	update	the	changes	made	in	the	copy	file	and	the	original	file.	To	create	a	merge	request,	do	the	following	steps.Open	projects,	click	Merge	Requests	on	the	projects	dashboard	and	then	click	on	New	merge.You	will	get	a	Merge	page,	Select	your	source	branch	and	click	Compare	branch	and
continue.A	New	merge	request	page	opens.	Give	all	the	required	detail	to	merge	and	click	Submit	merge	request.A	request	has	been	sent	to	the	person	for	merging	the	changes	in	the	project.Removing	a	forkIn	GitLab,	we	can	even	remove	the	fork	relationship	that	helps	not	to	send	merge	requests	to	the	upstream	project.	Only	project	owners	have	permission	to	remove	the	fork	of	a	project.	To	remove	a	fork,	do	follows	the	steps	below:Go	to	projects,	Click	on	Settings	and	then	click	General	as	shown	in	the
figure.A	General	Settings	page	opens	in	that	list,	scroll	down	to	Advanced	and	click	Expand.An	advanced	settings	page	opens	in	that	scroll	down	to	Remove	fork	relationship	and	click	on	it.A	confirmation	window	appears.	Type	the	project	link	to	proceed	and	click	Confirm.ConclusionOn	winding	up,	GitLab	is	a	user-friendly	and	open-source	tool	that	helps	to	store	the	file	and	organize	them	more	easily.	It	allows	developers	to	coordinate	easily	to	work	on	the	project.	GitLab	is	easy	to	manage	and	configure	the
projects,	and	it	has	relied	on	Git,	where	the	number	of	users	is	not	restricted	and	can	create	more	building	applications.	We	have	learned	the	basic	details	of	GitLab,	How	to	create	a	project,	group,	and	how	to	fork	a	project.	I	hope	this	tutorial	has	helped	you	to	understand	GitLab.	No	one	codes	alone.	Because	tech	teams	can	grow	at	breakneck	speeds,	solitary	coders	quickly	become	part	of	large	teams	of	developers	that	need	to	cooperate	and	coordinate	their	efforts.	Git	has	become	the	tool	for	source	code
management,	and	plenty	of	platforms	have	popped	up	to	make	Git	accessible	to	dev	teams.	GitLab	is	one	of	them.	This	beginners	guide	covers:	The	GitLab	Dashboard	What	youll	find	in	your	toolbar	How	to	create	your	first	project	Whether	youre	a	project	manager	looking	to	roll	this	out	to	your	team,	or	a	developer	getting	onto	a	Git	platform	for	the	first	time,	youre	sure	to	get	something	out	of	this	guide.	Heres	what	your	dashboard	will	look	like	the	first	time	you	open	up	GitLab.	Nothing	too	crazy	so	far.	This
screen	is	designed	to	help	direct	you	as	you	get	accustomed	to	GitLab.	Note	that	once	youve	created	projects,	this	screen	will	be	replaced	by	a	list	of	all	your	existing	projects.	But	for	now,	lets	cover	what	we	see	here:	Create	a	project:	Click	here	to	create	your	first	project.	Projects	are	where	youll	do	most	of	your	work	in	GitLab.	Create	a	group:	GitLabs	groups	let	you	bunch	projects	together.	This	not	only	helps	you	organize	your	projects,	but	you	can	grant	access	to	multiple	projects	more	quickly.	This	is	a
huge	time	saver	when	onboarding	multiple	people.	Think	of	GitLab	groups	a	bit	like	a	folder	in	Google	Drive.	If	you	had	dozens	of	documents	on	policies	and	best	practices	for	a	dev	team,	you	wouldnt	grant	your	team	access	document	by	document;	youd	stick	them	in	a	folder	and	grant	access	to	the	folder	in	one	go.	Explore	public	projects:	You	can	access	a	huge	library	of	public	GitLab	projects	here.	Maybe	you	want	to	use	public	projects	to	figure	out	how	to	organize	your	own,	or	youre	looking	to	grab	a	copy
of	open	source	software	and	contribute	to	it.	Learn	more	about	GitLab:	This	is	where	you	can	access	GitLabs	documentation,	geared	towards	helping	you	understand	and	use	the	platform.	It	covers	everything	from	creating	a	project	to	using	CI/CD	pipelines.	GitLabs	documentation	can	all	be	edited	directly	in	GitLab	through	merge	requests,	a	bit	like	a	wiki.	So	when	you	get	to	the	point	where	you	can	call	yourself	a	GitLab	pro,	you	can	give	back	by	contributing	to	GitLabs	documentation.	Now	that	weve	gone
over	what	youll	see	when	you	first	log	in,	lets	go	over	what	else	you	can	do	in	GitLab.	Lets	start	with	the	upper-left	corner	of	the	toolbar.	Projects:	Once	youve	created	or	been	given	access	to	projects,	this	is	where	youll	access	them.	The	drop-down	lets	you	access	three	screens:	Your	Projects,	Starred	Projects,	and	Explore	Projects.	The	Explore	Projects	option	is	how	you	can	browse	public	projects.	Groups:	From	here,	you	can	find	groups	youre	already	a	part	of	as	well	as	public	groups.	You	can	request	to	join
any	group	made	public	and	contribute	to	their	projects.	More:	This	dropdown	gives	you	access	to	dashboards	that	help	you	track	a	projects	progression	such	as	analytics	and	milestones	as	well	as	snippets,	which	are	a	bit	like	post-its	for	code.	Well	go	over	this	in	more	detail	later.	Now,	whats	on	the	right	side	of	the	toolbar?	From	left	to	right:	New:	This	drop-down	menu	lets	you	create	new	projects,	groups	or	snippets.	Search	bar:	From	here,	you	can	quickly	find	projects,	groups,	issues,	and	more.	Issues:	Issues
are	how	work	gets	done	in	GitLab.	Create	an	issue	and	assign	it	to	yourself	to	keep	track	of	what	you	need	to	get	done.	Assign	it	to	another	member	of	the	team	when	you	need	something	from	them.	You	can	give	an	issue	a	checklist	to	track	progress	on	a	more	complicated	task	or	link	them	to	other	issues	to	show	dependencies.	Merge	Requests:	Merge	requests	are	created	by	developers	when	theyre	ready	to	integrate	their	branch	of	code	with	the	source	code.	Theyre	virtually	identical	to	pull	requests	in
GitHub.	This	button	takes	you	to	a	dashboard	where	youll	be	able	to	access	the	merge	requests	from	the	projects	you	contribute	to.	To-do	list:	Whenever	an	issue	or	merge	request	is	assigned	to	you,	it	will	automatically	create	an	item	in	your	to-do	list.	This	will	also	happen	when	someone	@mentions	you.	Your	to-do	list	provides	a	quick	summary	of	everything	you	need	to	do.	Help:	Whether	you	need	support	or	access	to	GitLabs	documentation,	you	can	find	the	help	you	need	here.	Profile:	Through	this
dropdown,	you	can	change	your	status,	edit	your	profile,	and	personalize	your	settings.	Now	what	happens	when	we	click	on	that	More	dropdown	from	before?	Wow.	Theres	a	lot	to	go	over	here.	The	Activity	section	is	where	you	can	see	what	the	people	in	your	projects	have	been	up	to.	Everything	from	merge	events	to	comments	can	be	found	here.	You	can	choose	to	see	the	activity	in	all	the	projects	youre	in	or	just	starred	projects.	You	can	also	filter	the	entries,	focusing	only	on	merge	requests,	for	example.
Setting	Milestones	in	GitLab	is	a	great	way	to	track	issues	and	merge	requests.	Here	is	where	you	can	get	a	rundown	of	all	your	milestones,	including	the	ones	coming	up	and	the	ones	youve	already	closed.	GitLabs	Snippets	feature	is	essentially	post-its	for	code.	Anytime	youve	got	a	chunk	of	code	that	you	want	to	save,	you	can	create	a	snippet	in	GitLab	to	store	it.	Because	you	can	make	your	snippets	public	or	private,	you	can	use	them	in	a	variety	of	ways.	You	could	use	snippets	to	store	errors	in	code	and
share	them	with	other	members	of	the	team	without	creating	an	official	issue	maybe	to	get	input	before	you	do	anything	with	the	error.	Or	you	could	just	use	them	to	keep	track	of	what	you	need	to	work	on	later.	The	productivity	analytics	feature	lets	you	keep	an	eye	on	how	your	dev	team	is	doing,	skipping	the	usual	hassle	of	trying	to	get	answers	directly	from	your	developers.	This	tool	tracks	merge	requests	and	has	a	number	of	features	you	can	use	to	filter	by	groups,	projects,	milestones,	and	more.	The
environments	dashboard	lets	you	get	a	glance	at	multiple	projects	and	their	environments	at	once.	This	is	great	for	project	managers	and	team	leaders	who	need	to	supervise	pipelines	and	spot	blockers.	The	dashboard	can	display	a	maximum	of	seven	projects,	with	three	environments	per	project	(eg.	production,	staging).	The	operations	dashboard	goes	more	in-depth	on	a	per-project	basis	than	the	environments	dashboard.	This	means	you	can	see	a	projects	number	of	active	alerts,	last	commit,	pipeline	status,
and	when	it	was	last	deployed.	This	dashboard	makes	it	easy	to	track	each	projects	operational	health.	Now	that	weve	given	you	a	quick	overview	of	GitLabs	features,	lets	go	in-depth	on	the	one	youll	be	using	most:	projects.	Specifically,	were	going	to	look	at	how	to	create	a	new	project.	When	you	first	start	up	GitLab,	youll	get	your	main	dashboard.	From	here,	click	on	Create	a	project	to	kickstart	the	process.	We	already	have	a	few	options	to	choose	from	here.	We	can:	Create	a	blank	project	Create	from
template:	Use	built-in	templates	for	platforms	like	Android,	.Net	Core,	and	iOS	Swift.	Import	project:	If	youve	got	code	on	another	platform,	you	can	import	it	here.	GitLab	supports	importing	from	GitHub,	Bitbucket,	and	Google	Code	among	others.	CI/CD	for	external	repo:	This	lets	you	connect	external	repositories	to	GitLab,	using	a	GitLab	project	only	for	CI/CD	pipelines.	Were	going	to	cover	creating	a	blank	project.	Start	off	by	giving	our	project	a	name.	Notice	that	the	project	slug	field	has	been	auto-filled
with	whatever	you	enter	for	your	projects	name.	You	can	also	change	the	project	slug	without	affecting	the	project	name.	The	Project	URL	field	is	automatically	completed	with	your	username.	If	you	wanted	to	house	this	project	under	a	group	instead,	you	could	switch	that	here	through	the	dropdown	menu.	Its	also	possible	to	give	your	project	a	description	useful	for	differentiating	between	similarly-named	projects.	Next,	youll	need	to	choose	a	visibility	level	for	your	project.	Public	projects	are	visible	to
everyone	on	the	internet,	and	your	code	can	be	copied	by	anyone	over	an	HTTPS	connection.	Anyone	with	a	GitLab	account	can	also	view	your	projects	documentation,	jobs,	and	issues.	They	can	create	issues	as	well,	but	thats	about	as	much	of	an	impact	as	they	can	have	on	the	project	itself.	They	cant	see	or	create	merge	requests.	Public	projects	are	often	open-source	projects,	so	if	thats	what	youre	working	on,	then	you	can	set	your	project	as	public.	Otherwise,	youll	want	to	set	it	as	private.	This	means	that
access	to	the	project	has	to	be	manually	granted	by	the	project	owner	to	each	user.	Finally,	you	can	choose	to	initialize	your	repository	with	a	README	file.	Now	click	Create	Project	and	youre	done!	Now	that	youve	gone	over	the	basics	and	have	even	created	your	first	project	youre	all	set	to	start	coding	in	GitLab.	Push	some	code,	collaborate	with	the	rest	of	your	dev	team	or	keep	an	eye	on	the	teams	progress.	Wasnt	that	hard,	was	it?	Learning	how	to	use	GitLab	is	just	the	first	step	of	the	process.	When	youre
working	within	a	software	development	team,	you	also	need	to	know	how	to	coordinate	with	other	developers.	Thats	where	GitLab	excels.	Learning	how	to	use	GitLab	is	great,	but	what	about	slotting	it	in	with	your	tool	stack?	Without	the	right	integration,	you	can	spend	hours	just	copying	and	pasting	information	from	tool	to	tool	so	everyones	in	the	loop.	Just	because	a	tool	is	great	for	your	needs	doesnt	mean	it	works	for	another	team.	No	one	should	be	forced	to	use	a	tool	that	doesnt	fit	their	workflow.	Want	to
save	time	and	effort?	Try	Unito.	Unito	has	the	deepest	two-way	integrations	for	some	of	the	most	popular	tools	on	the	market,	including	GitLab	and	Asana,	GitLab	and	Trello,	GitLab	and	Google	Sheets,	and	more.	Heres	a	guide	to	integrate	GitLab	and	Jira	with	Unito.	Sync	data	across	tools	seamlessly,	use	rules	to	filter	out	irrelevant	information,	and	map	fields	so	everything	ends	up	exactly	where	it	needs	to	go.	All	of	that	in	just	a	few	minutes.	

How	to	use	gitlab	on	windows.	Gitlab	for	beginners.	Gitlab	tutorial	beginner.	Gitlab	guide.	Can	i	use	gitlab	for	free.

