
	

https://folasajomebusiz.bebopim.com/663407423834129755128465294731733276758342?basamexavotipujibemebetulewulovudakajedojexonixudonixu=tomusirazepexexevulisuvewirazikesaburuxamugodegidusosipasavixuxilaxofowogomojawukesobanadilufinabaxokotevereduwoxivuxapawulimuvadifidumererupunolumupatugowinekojowedolibilepisasozifitukozamekovofolubalumarawa&utm_term=python+file&xesotokupiwikekewevupovezogowobogipalepijitosubaporetivikatawaxegofutalasexonavudope=dexomepebopobesofuweladidosavesakufugugoziforupiligikatabazexafogewanebutusakitavipopakaxejuviwineripomesofesi




You	should	seek	to	the	start	of	the	file	before	modifying	it	using	`file.truncate()`	for	in-place	replacement.	Here's	how	you	can	do	it:	```python	import	re	myfile	=	"path/test.xml"	with	open(myfile,	"r+")	as	f:	data	=	f.read()	f.seek(0)	f.write(re.sub(r"ABC(\s+)(.*)",	r"ABC\1\2",	data))	f.truncate()	```	Alternatively,	you	can	read	the	file,	then	open	it	again	in
write	mode:	```python	with	open(myfile,	"r")	as	f:	data	=	f.read()	with	open(myfile,	"w")	as	f:	f.write(re.sub(r"ABC(\s+)(.*)",	r"ABC\1\2",	data))	```	Note	that	neither	`truncate()`	nor	opening	the	file	in	write	mode	will	change	its	inode	number.	This	is	not	specific	to	Python,	but	rather	how	the	underlying	file	system	works.	You	can	also	use	the	`python-
magic`	library	to	determine	the	MIME	type	of	a	file	without	calling	an	external	shell	command.	For	example:	```python	import	magic	print(magic.from_file('iceland.jpg'))	#	Output:	'JPEG	image	data,	JFIF	standard	1.01'	print(magic.from_file('greenland.png',	mime=True))	#	Output:	'image/png'	```	This	library	uses	the	same	underlying	`libmagic`
library	as	the	*NIX	`file`	command.	Here's	an	example	of	how	to	find	files	recursively	using	Python:	```python	import	os	from	os	import	scandir	def	is_sym_link(path):	return	os.path.isdir(path)	and	(ctypes.windll.kernel32.GetFileAttributesW(str(path))	&	0x0400)	def	find(base,	filenames):	hits	=	[]	def	find_in_dir_subdir(direc):	content	=	scandir(direc)
for	entry	in	content:	if	entry.name	in	filenames:	hits.append(os.path.join(direc,	entry.name))	elif	entry.is_dir()	and	not	is_sym_link(os.path.join(direc,	entry.name)):	try:	find_in_dir_subdir(os.path.join(direc,	entry.name))	except	UnicodeDecodeError:	print("Could	not	resolve	"	+	os.path.join(direc,	entry.name))	continue	except	PermissionError:
print("Skipped	"	+	os.path.join(direc,	entry.name)	+	".	I	lacked	permission	to	navigate")	continue	if	not	os.path.exists(base):	return	[]	else:	find_in_dir_subdir(base)	return	hits	#	Example	usage:	print(find("C:\\",	["Python",	"Homework"]))	```	Note	that	this	code	uses	the	`scandir`	function	from	the	`os`	module,	which	returns	an	iterator	over	the
directory	entries.	It	also	uses	the	`ctypes`	library	to	call	the	Windows	API	function	`GetFileAttributesW`.	I	finally	managed	to	get	it	working	after	making	some	adjustments.	All	credit	goes	to	@F.M.F.	You	can	indeed	display	a	file	open	dialog	using	tkinter	in	Python	2	or	Tkinter	in	Python	3	(see	other	answers	for	details).	However,	keep	in	mind	that
the	UI	of	this	dialog	is	outdated	and	doesn't	match	newer	Windows	10	file	open	dialogs.	Also,	if	you're	looking	to	embed	Python	support	into	your	own	app,	you'll	find	out	that	tkinter	is	not	an	open-source	library	and	has	a	commercial	pricing	model	(e.g.,	search	for	"activetcl	pricing").	I	found	the	pythonnet	library	instead,	which	is	open-source	(MIT
License).	To	install	it,	use	pip3:	pip3	install	pythonnet.	Here's	an	example	of	using	the	file	open	dialog	with	pythonnet:	import	sys	import	ctypes	import	clr	clr.AddReference('System.Windows.Forms')	from	System.Windows.Forms	import	OpenFileDialog	file_dialog	=	OpenFileDialog()	ret	=	file_dialog.ShowDialog()	if	ret	!=	1:	print("Cancelled")
sys.exit()	print(file_dialog.FileName)	If	you	need	a	more	complex	UI,	check	the	Demo	folder	in	pythonnet's	git.	I'm	not	sure	about	portability	to	other	OS's,	but	.net	5	is	planned	to	be	multi-OS	compatible.	One	reason	why	using	with	open('filename.txt')	as	fp:	for	line	in	fp:	print(line)	is	preferred	is	that	it	ensures	file	handles	are	closed	quickly	enough,
avoiding	"too	many	files	open"	errors	in	hypothetical	Python	implementations	without	deterministic	reference-counting	garbage	collection.	The	with	block	is	a	safer	way	to	handle	this.	Bonus	question:	why	isn't	the	file	closing	feature	included	in	the	iterator	protocol	for	file	objects?	This	feels	wrong	because	it	combines	two	separate	tasks—iterating
over	lines	and	closing	the	file	handle—in	one	action,	which	can	be	surprising	and	harder	to	understand	for	humans	reading	the	code.	The	more	challenging	aspect	of	Haskell's	IO	system	lies	in	its	capacity	for	logical	reasoning	about	program	behavior.	Other	languages	have	arrived	at	similar	conclusions.	Haskell	experimented	with	"lazy	IO"	which
enables	automatic	file	closure	once	you've	reached	the	end	of	the	stream,	but	this	approach	is	now	generally	discouraged	and	users	have	largely	shifted	to	explicit	resource	management	solutions	like	Conduit,	mirroring	Python's	with	block.	From	a	technical	standpoint,	certain	operations	involving	file	handles	in	Python	wouldn't	be	feasible	if	iteration
closed	the	file	handle.	For	instance,	consider	iterating	over	a	file	twice:	`with	open('filename.txt')	as	fp:	for	line	in	fp:	...	fp.seek(0)	for	line	in	fp:	...`.	This	scenario	may	arise	when	adding	new	code	to	an	existing	codebase	that	previously	utilized	similar	logic.	If	iteration	were	to	close	the	file,	this	wouldn't	be	possible.	Separating	iteration	and	resource
management	simplifies	composing	code	chunks	into	a	functioning	program,	a	crucial	usability	feature	of	languages	or	APIs.

Python	file	name	convention.	Python	file	write.	Python	file	extension.	Python	file	type.	Python	fileinput.	Python	file	handling.	Python	file	size.	Python	filename	without	extension.	Python	file	exists.	Python	file	read.	Python	filenotfounderror.	Python	filename	from	path.	Python	file	object.	Python	file	readline.	Python	file	path.


